Chemo-accumulation without changes in membrane potential in the microstome form of the ciliate Tetrahymena vorax.

نویسندگان

  • Heidi K Grønlien
  • Anna Kari Rønnevig
  • Bjarne Hagen
  • Olav Sand
چکیده

The swimming behaviour of ciliates is mainly determined by membrane potential and transmembrane fluxes. In a chemical gradient, swimming ciliates may approach or move away from the source. Based on experiments on Paramecium, it is generally assumed that chemical attractants and repellents affect the swimming behaviour of ciliates by specific changes in the membrane potential. We have examined whether there is a causal relationship between membrane potential and chemo-accumulation in the microstome form of the polymorphic ciliate Tetrahymena vorax. Effects of chemo-attractants on the membrane potential of Tetrahymena have not been previously reported. Microstome T. vorax cells aggregated close to a point source of l-cysteine and the complex meat hydrolysate proteose peptone. Chemo-accumulated cells displayed a significantly higher turning frequency than control cells at a similar cell density. A concentration of 20 mmol l(-1) l-cysteine did not evoke any detectable change in the membrane potential whereas 1% proteose peptone depolarised the cells by ∼12 mV. This is contrary to the current model, which predicts agents that induce a moderate depolarisation to be repellents. A solution of 1% proteose peptone contains 21 mmol(-1) Na(+). A solution of 21 mmol(-1) NaCl without organic compounds also caused ∼12 mV depolarisation but had no aggregating effect on the cells. Collectively, the electrophysiological and behavioural data indicate that chemo-accumulation in the microstome form of T. vorax is not governed obligatorily by the membrane potential. We thus suggest that the simple membrane potential model for chemokinesis in Paramecium may not be valid for T. vorax.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microstome--macrostome transformation in the polymorphic ciliate Tetrahymena vorax leads to mechanosensitivity associated with prey-capture behaviour.

Ciliates feed by phagocytosis. Some ciliate species, such as Tetrahymena vorax, are polymorphic, a strategy that provides more flexible food utilization. Cells of the microstomal morph of T. vorax feed on bacteria, organic particles and organic solutes in a non-selective manner, whereas macrostome cells are predators that consume specific prey ciliates. In the present study, we investigated a p...

متن کامل

Survival of Legionella pneumophila in the cold-water ciliate Tetrahymena vorax.

The processing of phagosomes containing Legionella pneumophila and Escherichia coli were compared in Tetrahymena vorax, a hymenostome ciliated protozoan that prefers lower temperatures. L. pneumophila did not multiply in the ciliate when incubated at 20 to 22 degrees C, but vacuoles containing L. pneumophila were retained in the cells for a substantially longer time than vacuoles with E. coli. ...

متن کامل

In the polymorphic ciliate Tetrahymena vorax, the non-selective phagocytosis seen in microstomes changes to a highly selective process in macrostomes.

Ciliates use phagocytosis to acquire edible particles. The polymorphic ciliate Tetrahymena vorax appears in two forms ('microstomes' and 'macrostomes'). Transformation of microstomes into macrostomes takes place in the presence of the ciliate Tetrahymena thermophila and enables the macrostome to phagocytose the latter species. The non-specific, constitutive phagocytosis in microstomes thereby c...

متن کامل

A complex of iron and nucleic acid catabolites is a signal that triggers differentiation in a freshwater protozoan.

The polymorphic ciliated protozoan Tetrahymena vorax can undergo differentiation from the microstomal form, which normally feeds on bacteria and other particulate matter, into the macrostomal cell type, which is capable of ingesting prey ciliates. The process is triggered by exposure of the microstome to an inducer contained in stomatin, an exudate of the prey. To establish the identity of the ...

متن کامل

Electron-microscopic observations on the macronuclear development of Stylonychia mytilus and Tetrahymena pyriformis (Ciliophora-Protozoa).

This report describes an ultrastructural investigation of macronuclear development following conjugation in Stylonycltia mytilus (a spirotrichous ciliate) and Tetrahymena pyriformis (a holotrichous ciliate). In S. mytilus, polytene chromosomes are formed in the young macronucleus (macronuclear Anlage). They are subsequently broken between the bands by 'membranous' partitions; the assembly of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 213 Pt 23  شماره 

صفحات  -

تاریخ انتشار 2010